Canadian Bioinformatics Workshops

www.bioinformatics.ca

In collaboration with
Cold Spring Harbor Laboratory &
New York Genome Center
Module 3
Expression and Differential Expression (lecture)

Malachi Griffith & Obi Griffith
High-throughput Biology: From Sequence to Networks
April 27-May 3, 2015

pre-mRNA

Intron

Exon

mRNA

Short reads

Short read is split by intron when aligning to reference Genome
Learning objectives of the course

• Module 0: Introduction to cloud computing
• Module 1: Introduction to RNA sequencing
• Module 2: RNA-seq alignment and visualization
• **Module 3: Expression and Differential Expression**
• Module 4: Isoform discovery and alternative expression

• Tutorials
 – Provide a working example of an RNA-seq analysis pipeline
 – Run in a ‘reasonable’ amount of time with modest computer resources
 – Self contained, self explanatory, portable

Learning Objectives of Module

• Expression estimation for known genes and transcripts
• ‘FPKM’ expression estimates vs. ‘raw’ counts
• Differential expression methods
• Downstream interpretation of expression and differential estimates
 – multiple testing, clustering, heatmaps, classification, pathway analysis, etc.
Expression estimation for known genes and transcripts

What is FPKM (RPKM)

- RPKM: Reads Per Kilobase of transcript per Million mapped reads.
- FPKM: Fragments Per Kilobase of transcript per Million mapped reads.
- In RNA-Seq, the relative expression of a transcript is proportional to the number of cDNA fragments that originate from it. However:
 - The number of fragments is also biased towards larger genes
 - The total number of fragments is related to total library depth
- FPKM (or RPKM) attempt to normalize for gene size and library depth

- RPKM (or FPKM) = \(\frac{10^9 \times C}{N \times L} \)
 - \(C \) = number of mappable reads/fragments for a gene/transcript/exon/etc
 - \(N \) = total number of mappable reads/fragments in the library
 - \(L \) = number of base pairs in the gene/transcript/exon/etc

- http://www.biostars.org/p/11378/
- http://www.biostars.org/p/68126/
How does cufflinks work?

- Overlapping 'bundles' of fragment alignments are assembled, fragments are connected in an overlap graph, transcript isoforms are inferred from the minimum paths required to cover the graph.
- Abundance of each isoform is estimated with a maximum likelihood probabilistic model.
 - makes use of information such as fragment length distribution

http://cufflinks.cbcb.umd.edu/howitworks.html

How does cuffdiff work?

- The variability in fragment count for each gene across replicates is modeled.
- The fragment count for each isoform is estimated in each replicate (as before), along with a measure of uncertainty in this estimate arising from ambiguously mapped reads.
 - transcripts with more shared exons and few uniquely assigned fragments will have greater uncertainty.
- The algorithm combines estimates of uncertainty and cross-replicate variability under a beta negative binomial model of fragment count variability to estimate count variances for each transcript in each library.
- These variance estimates are used during statistical testing to report significantly differentially expressed genes and transcripts.
Why is cuffmerge necessary?

- **Cuffmerge**
 - Allows merge of several Cufflinks assemblies together
 - Necessary because even with replicates cufflinks will not necessarily assemble the same numbers and structures of transcripts
 - Filters a number of transfrags that are probably artifacts.
 - Optional: provide reference GTF to merge novel isoforms and known isoforms and maximize overall assembly quality.
 - Make an assembly GTF file suitable for use with Cuffdiff
 - Compare apples to apples

What do we get from cummeRbund?

- Automatically generates many of the commonly used data visualizations
- Distribution plots
- Overall correlations plots
- MA plots
- Volcano plots
- Clustering, PCA and MDS plots to assess global relationships between conditions
- Heatmaps
- Gene/transcript-level plots showing transcript structures and expression levels
What do we get from cummeRbund?

Alternatives to FPKM

- Raw read counts as an alternate for differential expression analysis
 - Instead of calculating FPKM, simply assign reads/fragments to a defined set of genes/transcripts and determine “raw counts”
 - Transcript structures could still be defined by something like cufflinks
- HTSeq (htseq-count)
 - http://www-huber.embl.de/users/anders/HTSeq/doc/count.html
 - htseq-count --mode intersection-strict --stranded no --minaqual 1 --type exon --idattr transcript_id accepted_hits.sam chr22.gff > transcript_read_counts_table.tsv
 - Important caveat of ‘transcript’ analysis by htseq-count:
‘FPKM’ expression estimates vs. ‘raw’ counts

• Which should I use?
• FPKM
 – When you want to leverage benefits of tuxedo suite
 – Good for visualization (e.g., heatmaps)
 – Calculating fold changes, etc.
• Counts
 – More robust statistical methods for differential expression
 – Accommodates more sophisticated experimental designs with appropriate statistical tests

Alternative differential expression methods

• Raw count approaches
 – DESeq - http://www-huber.embl.de/users/anders/DESeq/
 – edgeR -
 edgeR.html
 – Others...
Multiple approaches advisable

RNA sequencing and analysis

Lessons learned from microarray days

- Power analysis for RNA-seq experiments
 - http://euler.bc.edu/marthlab/scotty/scotty.php
- RNA-seq need for biological replicates
 - http://www.biostars.org/p/1161/
- RNA-seq study design
 - http://www.biostars.org/p/68885/
Multiple testing correction

• As more attributes are compared, it becomes more likely that the treatment and control groups will appear to differ on at least one attribute by random chance alone.
• Well known from array studies
 – 10,000s genes/transcripts
 – 100,000s exons
• With RNA-seq, more of a problem than ever
 – All the complexity of the transcriptome
 – Almost infinite number of potential features
 • Genes, transcripts, exons, juntings, retained introns, microRNAs, IncRNAs, etc, etc
• Bioconductor multtest

Downstream interpretation of expression analysis

• Topic for an entire course
• Expression estimates and differential expression lists from cufflinks/cuffdiff (or alternative) can be fed into many analysis pipelines
• See supplemental R tutorial for how to format cufflinks data and start manipulating in R
• Clustering/Heatmaps
 – Provided by cummerBund
 – For more customized analysis various R packages exist:
 • hclust, heatmap.2, plotrix, ggplot2, etc.
• Classification
 – For RNA-seq data we still rarely have sufficient sample size and clinical details but this is changing
 • Weka is a good learning tool
 • RandomForests R package (biostar tutorial being developed)
• Pathway analysis
 – David
 – IPA
 – Cytoscape
Introduction to tutorial
(Module 4)

Bowtie/Tophat/Cufflinks/Cuffdiff
RNA-seq Pipeline

Module 4

Inputs

Sequencing
Read alignment
Transcript compilation
Gene identification
Differential expression
Visualization

RNA-seq reads (2 x 100 bp)
Bowtie/Tophat alignment (genome)
Cufflinks
Cuffdiff (A:B comparison)
CummRbund

Raw sequence data (.fastq files)
Reference genome (.fa file)
Gene annotation (.gtf file)
We are on a Coffee Break & Networking Session